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Abstract
In this paper a Markov switching mixture of normal distributions is applied to
the monthly returns on the main stock indices for emerging financial markets
in central Europe (BUX, PX50 and WIG). Additionally the results are compared
to those obtained for western Europe (DAX, CAC40 and FTSE100). The results of
model comparison suggest that the Markov switching mixture of normal distri-
butions has substantially more descriptive validity than a single normal distri-
bution. Nevertheless, there is no clear indication that, in modelling monthly
returns, the Markov switching mixture of three normal distributions is superi-
or to the mixture of two. Finally, the ability of the models to describe returns
during international financial crises is evaluated.
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1. Introduction

Over the past four decades researchers have been preoccupied with determining the
distribution of market returns. The attributes of the distribution are a decisive as-
sumption of portfolio analysis, theoretical models of capital asset prices, and deri-
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vative valuation. From the point of view of financial theory, the most convenient
assumption is to consider that a normal distribution with stationary parameters ap-
proximates a distribution of observed returns. However, daily returns from many
assets, portfolios and main indices seem to be drawn from non-normal distribution.
From the classic paper of Fama (1965) it is known that the empirical distribution of
returns from stocks tends to display more kurtosis and have a pronounced higher
peak than allowed under the normality hypothesis. However, according to the evi-
dence provided by Blattberg and Gonedes (1965) monthly returns conform to the
normality hypothesis.

The results mentioned were obtained for developed markets. Due to the fact that
returns on assets from emerging markets are more volatile (see Bekaert and Harvey
(2003), Harvey (1991) and (1995)), one can expect that it will be even more difficult
to identify their distribution. A variety of approaches to modelling returns have been
adopted. The work of Kon (1984) contains their review.

This paper is innovative insomuch as it introduces application of Markov switch-
ing distribution to modelling returns on indices from central and eastern European
exchanges, namely the Budapest Stock Index (BUX), Prague Stock Exchange 50
Index (PX50) and Warsaw Stock Exchange Index (WIG). Additionally, results are
compared with those obtained for indices from western Europe, like DAX, CAC40,
FTSE100.

The idea of Markov switching models (here Markov switching mixture of nor-
mal distributions) consists of recognizing different states of financial markets. Dur-
ing some of them the market is much more volatile, and these are called crisis states.
Thus, there should be a significant difference between distributions from which
returns in a balanced market and in an unstable one are drawn. Turner et al. (1989)
assume that each state is described by a normal distribution, but with different pa-
rameters. It is worthwhile to highlight the fact that three different methods of eval-
uation of the model selection are applied in this work. One of them is based on a
likelihood ratio test. The second one determines whether the chosen model for a
particular stock market index is constant over time. In other words, a Markov switch-
ing model is fitted to an increasing sample, and the likelihood ratio test is adjusted.
Finally, the method of moment comparison is applied for verification of selection of
the model.

The motivation to explore the properties of returns from European emerging
markets comes from the increasing interest in the economies of central European
countries which will soon become members of the EU. From a perspective of inter-
national investors who can benefit from investing in newly available emerging mar-
kets (see Köke (1999), Harvey (1995)), it is essential to learn more about the prop-
erties of returns observed on those markets. The attention of global market partici-
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pants is attracted to emerging markets by their attributes like impressive expected
returns, and the low correlations with developed countries’ equity. However, there is
a troublesome quality of these markets, namely the high volatility observed especial-
ly during a crisis (see Ang and Bekaert (2002), Harvey (1995)). Therefore the suit-
able model should make possible an analysis of returns properties during the calm
and crisis periods. Undoubtedly the Markov switching framework gives such an
opportunity. Especially since it was successfully applied to model returns on indices
of well-developed capital markets. (among other Ceccetti (1990), Hamilton and Lin
(1996), Rydén et al. (1998), Schaller and Norden (1997), Turner et al. (1989)). The
motivation for applying this particular methodology comes also from the fact that in
the existing literature there is only the paper of Linne (2002) in which Markov switch-
ing models for modelling returns of assets from Central and Eastern Europe are
applied. In contrast, in a mentioned work a different model than the one presented
here was considered.

Furthermore the question about the difference between leverage effect observed
on mature and emerging markets in Europe, motivates this study. Black (1976) was
probably the first who documented a negative relationship between current stock
returns and future volatility, which he attributed to the leverage effect. Since his
work the mentioned relationship has been the subject of numerous empirical studies
(see among others Koutmmos and Saidi (1995), Engle and Ng (1993), Schwert
(1990)). This paper extends the existing literature in two ways: first, it applies the
Markov switching mixture of normal distributions to the examination of leverage
effect; and second, its analysis covers the mature and emerging markets.

From a theoretical viewpoint, this examination seems interesting because it fo-
cuses, among other things, on the problem of finding a suitable model to measure
the skewness and kurtosis of returns. There are at least a couple of papers which
have examined the asset allocation problem with special attention paid to positive
skewness (see Peiró (2002), Chunhchinda et al. (1997), Lai (1991)). The crucial
issue for these studies is the selection of an adequate return distribution.

In addition the paper also poses several interesting questions for investors like: Is
it possible to distinguish distinct states in stock markets returns? Do stock returns
exhibit features which are common across European mature and emerging markets?
Are the shifts in returns related to certain well identified crises?

The paper is organized as follows. Section 2 contains data description and sum-
mary statistics of the data. Section 3 provides a description of the model, methods
of its selection and parameter estimation. The results of the model selection and
estimation (with analysis of vulnerability of crises for different markets) are carried
out in section 4. Finally, section 5 presents conclusions.
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2. Data

The sample used for this study comprises monthly logarithmic returns measured in
percentage terms for the CAC40, DAX, FTSE100, BUX, PX50, and WIG index for
the period from January 1995 to November 2002. Daily quotations for these indices
are available on the internet site of Parkiet,1 which is a stock exchange magazine.
The summary statistics of monthly returns for examined markets are presented in
Table 1.

Table 1. Summary Statistics for Data

The distinction between statistical properties of monthly returns for western Eu-
ropean markets and central European markets is easily recognizable. The average
variance and excess kurtosis calculated for the BUX, PX50 and WIG is more than
double that for the DAX, CAC40 and FTSE100. Furthermore, skewness is compa-
rable among all indices. The coefficients of skewness for most indices are negative,
whereas the Polish stock returns exhibit a positive value.

One question, which is fundamental when dealing with monthly returns is the
issue of normality hypothesis Blattberg and Gonedes (1965). The measure of skew-
ness and excess kurtosis shows that the distributions of the returns are leptokurtic
relative to the normal distribution, with one exception: namely the CAC40. For this
index excess kurtosis was equal to 0.052. However, formal tests2 for normality can-
not reject the null hypothesis for CAC40, FTSE100, BUX, PX50, WIG. In the case
of the DAX normality is rejected.

1. Further information is available on web site www.parkiet.com.pl.
2. The following tests are applied: Shapiro-Wilk, Kolomogorov-Smirnov, Cramee-von Mises,
Anderson-Darling.

Moments DAX CAC40 FTSE100 BUX PX50 WIG 
Mean µ1 0.287 0.468 0.214 1.443 -0.091 0.485 

Variance σ1
2 48.36 37.87 16.78 109.8 55.29 92.68 

Skewness -1.009 -0.393 -0.604 -0.676 -0.376 0.219 
Excess kurtosis 1.980 0.052 0.502 2.959 0.922 2.415 

Likelihood N(µ1, σ1
2) -318.53 -306.92 -268.26 -357.27 -324.89 -349.42 
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3. Methodology

3.1 Model

The main effort of researchers, who deal with the problem of determining the suit-
able model of stock returns, is to construct the model which will be able to repro-
duce the attributes of stock returns - such as asymmetry and fat tails in comparison
to single normal distribution. The Markov switching models belong to a general
class of mixtures of distributions, which have the ability to flexibly approximate
general classes of density functions. Moreover, those models are able to generate
values for the skewness and excess kurtosis close to those observed for real market
data (see Timmermann (2000)).

In this study the Markov switching mixture of normal distribution described by
Hamilton (1990) is applied. It was successfully used by Turner et al. (1989) for
modelling excess returns of the S&P 500 index. In contrast to both those papers,
where a financial market could be only in two states, the case of three states is
examined, too.

The model postulates the existence of an unobservable Markov chain St that can
take one of K-values. Each of them is attainable for the process St. When the finan-
cial market is in one of the K-states then returns on the index have been drawn from
normal distribution, which corresponds to this state. A further assumption is that
evolution of Markov chain is described by transition matrix P.

In this paper the following notation has been adopted. The return in month t is
equal to yt. The total number of monthly observation for each index is equal to T.
Finally, the Markov switching mixture of K-normal distributions MSMIXN(K) has
the following form:

where                    , and

The parameters of the above model are estimated by expectation maximization (EM)
algorithm, which is presented in the next subsection. As the result of estimation
procedure, among others, one receives two probabilities. The inference probability,
which is equal to probability that in time t the Markov chain is in the state i on the
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condition that the sample up to the observation t is known. In turn the smoothed
probability is equal to the probability that in time t the Markov chain is in the state i
on the condition that the whole sample is known. Both probabilities are used in the
process of state identification.

3.2 Estimation

In this study the parameters of Markov switching models are estimated by EM
algorithm. This iterative method originally developed by Dempster et al. (1977) was
adjusted by Hamilton (1994) and Kim (1994), for Markov switching models. In
order to discuss the application of an EM algorithm to a Markov switching mixture
of normal distributions, the following notation has to be introduced. The vector of
parameters to estimation is defined as θ = (α, λ), where α is defined as

{ }[ ] Kiii K2,1
'2, == σµα . Thus, it contains parameters that determine the normal distri-

bution in each state. In turn, λ is a K(K-1)-vector, whose elements correspond to
probabilities pij from matrix P. This particular number of parameters is sufficient to
describe uniquely transition matrix P. To estimate the parameters of vectors λ and α,
one has to calculate inference (filtered), forecast and smoothed probabilities which
are defined as ( )θ;tt jSP Λ= , ( )θ;1−Λ= tt jSP , ( )θ;Tt jSP Λ= , respectively, for each
state of the Markov chain. is a set of all past observations to the observation t. θt is
the whole vector of parameters which is known after l-iterations. By collecting these
forecast, inference, and smoothed probabilities in K -vectors, one obtains 1−ttξ , ttξ ,
and Ttξ  respectively.
Thus,

The lth-iteration of the EM algorithm starts with parameters obtained from 1-1th -
iteration. Next one iterates equation (4) and (5) to estimate 1−ttξ  and ttξ  for t =
1,...T. The initial vector for iterating of equations (4) and (5) is equal to the vector of
ergodic probabilities π.
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where

and

The 1 represents an K-vector of 1s, and the symbol ⊗  denotes element-by-element
multiplication. The log likelihood function for the given sample after l-iterations can
also be obtained as a by-product of this algorithm in the form:

Next, for estimating smoothed probabilities collected in the vector Ttξ , one uses an
algorithm developed by Kim (1994), t = T -1, T - 2,..., 1, namely:

where sign (÷) denoted element-by-element division. After vector Ttξ̂  is estimated
for each observation t, it is possible to estimate elements of vector (probabilities pij

l

the elements of transition matrix P):

Smoothed probabilities are also needed to estimate the vector α1, because:

And

In this way one arrives at the complete vector θt. The process continues until the
change in parameters values between iterations is less than the target convergence
criterion c = 10-8, namely cll ≤− −1ˆˆ θθ , where ⋅ denotes an Euclidean norm.
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Although the EM algorithm monotonically increases the value of likelihood function
in each iteration Hamilton (1990), it can not ensure a convergence of parameters to
a global maximum for a priori starting parameters. It is due to the fact that the EM
algorithm is sensitive to the choice of starting values θ0. For some it can easily get
stuck in local maximum or in saddle points Ané and Libidi (2001).

To avoid this problem, 200 starting vectors θ0 for a two state model and 500 for
a three state model are generated randomly and EM algorithm for each of 200 (500)
starting vectors is launched. Among the 200 (500) obtained estimators, that which
maximized the log likelihood is a maximum likelihood estimator (compare Rydén et
al. (1998), Ané and Libidi (2001)).

3.3 Model specification and evaluation

The application of MSMIXN(K) requires determination of the parameter K, which
corresponds to the number of state of Markov chain . On the one hand there are
arguments for the Markov mixture of only two normal distributions. The examined
financial market can be in the calm or crisis regime. It is expected that the crisis
regime is characterized by a higher volatility, and smaller mean of expected returns
than the calm regime (see Hamilton (1990), Turner et al. (1989)). On the other hand
one can expect that by consideration of MSMIXN(3) better fitting to data can be
obtained (see Rydén et al. (1998)).

So one would like to test whether MSMIXN(K) or MSMIXN(K+1) has better
descriptive validity. The most common approach assumes likelihood ratio test appli-
cation. Unfortunately, the testing statistic does not have the customary asymptotic χ2

distribution. For example, when a single normal distribution is tested against Markov
switching mixture of two normal distributions, the elements p11 and p22 of matrix P
are unidentified under the null hypothesis, which has a form H0: µ2 = 0, 02

2 =σ . For a
general discussion of this identification problem see Davis (1977).

In the general case of the test MSMIXN(K) against MSMIXN(K+1), the null
hypothesis has the form H0: µK+1 = 0, 02

1 =+Kσ . In this case 2K parameters are not
identified. Inevitability of statistic distribution for this test encouraged researchers to
look for alternative methods, which allowed them to carry out the test. In this study
three of four well known approaches for model selection are considered. These
methods were used or discussed in number of papers (see among others Smith
(2002), Schaller and Norden (1997), Hamilton and Lin (1996), Cecchetti et al. (1990),
Turner et al. (1989)), and it motivates their application. For a detailed presentation of
the fourth approach see Davis (1987).

Garcia (1998) identified critical values as one alternative method for model selec-
tion, while Hansen (1996) proposed p-values determination, by means of a simula-
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tion as another method respectively. In this study results of Garcia are implemented
in case of the test single normal distribution (what corresponds with MSMIXN(1))
against MSMIXN(2). At the same time the Hansen’s method (1996), also used by
Cecchtti et al. (1990) is applied in case of the test MSMIXN(2) against MSMIXN(3).
This method is based on simulation, which is briefly discussed below. The first step
of the simulation is to calculate the LR statistic for a given sample, in form:
LR = 2(LMSMIXN(3)-LMSMIXN(2)), where LMSMIXN(3) and LMSMIXN(2) is the value of the log
likelihood function for the parameters which maximise it. Next follows Cecchetti et
al. (1990), 1000 time series are generated with the same length as the given sample
and with parameters estimated from the MSMIXN(2) model. Instantaneously, for
each of this time series a LRi statistic is computed where i = 1, 2 ... 1000. If k of
these statistics exceed the observed LR (computed for the given sample), then the p-
value of the test is estimated by the fraction k+1/1000.

In addition to the above approach to model selection two other methods are
applied. The idea of the first of them is based on the assumption, that a model
exhibits superiority in fitting to data if its choice is invariant on the size of sample.
Therefore K can be selected for only a part of the given sample, but the MSMIXN(K)
model will be suitable to describing the whole sample. For examining this attribute of
the model, a sequential approach may be used. This approach postulates that for the
samples consisting of n0, n0+1...,T observations respectively, likelihood ratio statis-
tics are computed for a single normal distribution against MSMIXN(2), and the
MSMIXN(2) model against MSMIXN(3). Thus, one considers two decision prob-
lems. One of them is H0: µ2(n)=0, ,0)(22 =nσ and the second H0: µ3(n)=0,

,0)(23 =nσ where µ2(n), µ3(n), and ),(22 nσ  )(23 nσ are parameters estimated for sam-
ple of the size n, and n = n0,...,T. The likelihood ratio (LR) statistic as function of
sample size are respectively defined as: LR12(n) = 2(LMSMIXN(2)(n)-LMSMIXN(1)(n)), and
LR23(n) = 2(LMSMIXN(3)(n)-LMSMIXN(2)(n)). LMSMIXN(1)(n), LMSMIXN(2)(n), and LMSMIXN(3)(n)
are values of the log likelihood functions for the parameters estimated by an EM
algorithm for a sample which contains n-observations. The constancy of the mod-
el’s choice can be evaluated by plotting graphs of LR12(n) and LR23(n) statistics
against the number of observations. If these functions change not dramatically and
its values lie above critical value (in case of K =1 against K =2) then one can con-
clude that the choice of a model is independent of the size of a given sample.

The comparison of moments is the third approach to the model selection prob-
lem. By evaluating the difference between the third, and fourth moment estimated
from the data (as in Table 1) and the corresponding moments of the Markov switch-
ing model, one can make assessment of fitting the model to real market data. The
formulae for variance skewness, and excess kurtosis for the MSMIXN(K) model
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are reported by Timmermann (2000). Below the formulae equivalent to them are
presented.

where π = (π1,π2,...,πΚ) are ergodic probabilities for the Markov chain St which gen-
erates states for MSMIXN(K) model, and ∑=

= K

i ii1
µπµ . Despite the complicated

form of the above, the equations can be easily derived from the reasoning of Tim-
mermann (2000).

4. Results

According to results reported in Table 1 monthly returns on European indices dis-
play higher values of excess kurtosis and skewness than allowed by normal distribu-
tion. However, tests for normality do not reject the null hypothesis. The only excep-
tion is the main German index. Therefore the analysis starts with the hypothesis that
these returns on all indices are normally distributed. Next, one runs the likelihood
ratio test to verify descriptive validity of a single normal distribution (MSMIXN(1))
against the MSMIXN(2) model. The values of statistics are reported in Table 2. The
null hypothesis is rejected for almost all indices; the only exception is the CAC40,
with a LR statistic between the asymptotic and empirical critical values for signifi-
cant level at 5% reported by Garcia (1998).

Table 2. Results of Tests for Model Selection
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Index Normal v.s MSMIXN(2) 
Value of statistic 

MSMIXN(2) v.s MSMIXN(3) 
p-value 

DAX 23.72***1 0.094 
CAC40 10.78*2 0.037 

FTSE100 26.27*** 0.007 
BUX 15.53*** 0.674 
PX50 14.42*** 0.019 
WIG 15.78*** 0.742 

 1*** denotes significance at the level 1 %, the critical value for this level is equal to 14.02.
1* denotes significance at the level 10%, the critical value for this level is equal to 8.92.
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By applying the EM algorithm, the parameters of the MSMIXN(2) model for each
index are obtained. Next for identification of distribution (state) from which each
monthly observation has been drawn. Smoothed and inference probabilities are plot-
ted against time for each index. Additionally, on these plots, the duration of interna-
tional crises are denoted by shaded areas. The following crises are taken into consid-
eration: Asian 06.1997-10.1997, Russian 08.1998-10.1998, Brazilian 01.1999-03.1999,
Turkish 02.2001-03.2001, 11th September terrorist attack 09.2001-10.2001, Ar-
gentinean 12.2001-02.2002, and Accounting scandals in USA 06.2002-07.2002. From
Figure 1 and Table 3 the state 1 for BUX, and state 2 for WIG correspond to unsta-
ble market. From figures like Figure 1 and from Table 3, one can conclude that state
1 for DAX, CAC40 and state 2 for FTSE100 and PX50 describe those market in
crisis time.

Table 3. Result of  Estimations MSMIXN(2) Model for Indices

One of the striking observations from the results reported in Table 3 is that the
probability of staying in a unstable state is higher for indices of western European
stock exchanges. It supports the hypothesis that on central European markets trends
are less stable than in western Europe. Nonetheless, unstable states for emerging
markets exhibit much higher variance in comparison to mature ones. A negative
mean is a characteristic for almost all unstable states, however, for the index of the
Polish stock market this mean is positive.

The result of moment comparison reveals the superiority of the MSMIXN(2) to
a single normal distribution. Actually, for almost all time series, the values of skew-
ness and excess kurtosis for the MSMIXN(2), computed according to Timmer-
mann’s formulae, are significantly closer to these parameters estimated directly from

Parameters DAX CAC40 FTSE100 BUX PX50 WIG 
µ1 -1.023 

(0.175) 
-1.952 
(1.387) 

1.522 
(0.286) 

-4.179 
(0.890) 

4.072 
(0.772) 

0.337 
(0.140) 

σ1
2 68.26 

(21.74) 
56.87 

(21.01) 
3.724 

(1.875) 
433.9 

(163.6) 
2.544 

(1.811) 
53.77 

(11.95) 
p11 0.939 

(0.025) 
0.773 

(0.210) 
0.965 

(0.026) 
0.726 

(0.134) 
0.624 

(0.239) 
0.896 

(0.120) 
µ2, 2.477 

(0.549) 
2.122 

(3.240) 
-0.333 
(0.587) 

2.197 
(1.076) 

-0.602 
(0.975) 

4.973 
(2.385) 

σ2
2 6.135 

(2.735) 
19.98 

(5.952) 
21.72 

(3.823) 
74.71 

(19.56) 
59.21 

(9.653) 
404.7 

(214.7) 
p22 0.898 

(0.043) 
0.862 

(0.120) 
0.983 

(0.014) 
0.978 

(0.031) 
0.935 

(0.051) 
0.000 

(0.210) 
Likelihood -306.67 -301.53 -255.43 -349.51 -317.68 -341.53 

 Standard errors in parentheses.
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the data (see Table 4). Nevertheless, skewness and excess kurtosis for the main
French index computed using the above mentioned formulae differ more from the
value estimated from the data than in the case of normal distribution. It is a further
argument, which supports the finding, that the normal distribution fits better to monthly
returns of CAC40 than the MSMIXN(2) model. Therefore, the returns on CAC40
are excluded from further examination, because single normal distribution is select-
ed as best fitting. However, the results of fitting MSMIXN(3) to this index are re-
ported. It is worth emphasising that the variance of MSMIXN(2) model differs only
2.3% on the average from the variance estimated directly from data (see Table 4).

Table 4. Moments for MSMIXN(2)

A further argument supporting the superiority of the MSMIXN(2) is provided by
examining the test of LR statistics constancy. The upper graphs in Figure 2 show
the LR12(n) for each index for the period from January 1995 to November 2002
along with the asymptotical critical value (5%) reported by Garcia (1998). From
upper graphs in Figure 2 it is clear that the MSMIXN(2) exhibit better descriptive
properties than a single normal distribution. Almost all the time all plots of LR12(n) lie
above the critical value; thus the normality is rejected in favour of MSMIXN(2).
There is one more interesting observation to be made from the upper left graph in
Figure 2, namely a striking similarity between the graphs of the LR12(n) statistics for
western European indices, which could be explained by a strong relation between
those markets. For central European indices there are no such similarities in the
upper right graph; this is not surprising, since the correlation between these markets
is less then half as much as for western ones3.

In the next part of the analysis, the descriptive validity of the MSMIXN(3) model
is assessed. From the right part of Table 2, where p-values are estimated, it is clear
that the MSMIXN(2) model is rejected for the FTSE100 and the PX50 at the 5%
significance level and for the German main index at 10%. However, for the WIG and
BUX, with p-values greater than 0.4, there is no reason to reject the null hypothesis.

Moments DAX CAC40 FTSE100 BUX PX50 WIG 
Variance  47.88 37.60 16.59 104.7 53.61 88.66 
Skewness -0.459 -0.455 -0.311 -0.630 -0.057 0.727 
Excess kurtosis  1.059 0.784 0.670 2.987 0.197 4.411 
 

3. The correlation coefficients between markets are available upon request from the author.
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According to the above findings MSMIXN(3) can be used to model returns on
DAX, FTSE100, PX50. However, results of estimation parameters of MSMIXN(3)
for the remaining indices are also reported in Table 5. The first observation is easy to
make; that consideration of the MSMIXN(3) model instead of the MSMIXN(2)
results in a reduction of variance in all states. Nevertheless, the effect of higher
variance in unstable states for emerging markets remains. To see this compare state
2 for the DAX and FTSE100 with state 1 for the PX50. It is also interesting to note
that the state with the highest absolute mean has relatively low variance. For exam-
ple state 3 for FTSE100 and state 2 for PX50 have that attribute.

Table 5. Result of estimations MSMIXN(3) Model for Indices

For state identification, a procedure analogous to that used for the MSMIXN(2)
model is carried out. However, this time, one has to plot two graphs in order to
identify the states. From graphs b) and c) in Figure 3 and Table 5 for DAX, FTSE100,
and PX50 one knows that states 2 and 3 for the DAX, and state 1 for PX50 and state
2 for FTSE100 correspond to unstable markets.

Table 6 reports the recognizable difference in transition matrices obtained for
central and western European indices. The probability of staying in each state for
western Europe indices is incomparably higher than for staying in a state for central
Europe (see Table 6). This is a further argument for instability trends in central
Europe, because also the findings in case of fitting the MSMIXN(2) confirm it.

Parameters DAX CAC40 FTSE100 BUX PX50 WIG 
µ1 2.677 

(0.853) 
2.029 

(1.387) 
1.208 

(0.286) 
3.293 

(0.432) 
-1.022 
(0.362) 

5.885 
(1.789) 

σ1
2 9.132 

(2.119) 
22.886 
(5.038) 

3.225 
(1.875) 

33.51 
(8.532) 

64.75 
(22.73) 

8.350 
(2.368) 

µ2 0.352 
(1.559) 

-9.879 
(3.240) 

-0.333 
(0.587) 

3.302 
(1.076) 

4.601 
(0.975) 

-0.977 
(0.167) 

σ2
2 46.29 

(16.74) 
9.114 

(5.953) 
21.54 

(5.721) 
311.5 

(83.17) 
1.652 

(0.453) 
59.77 

(16.35) 
µ3 -15.57 

(3.109) 
-12.99 
(2.874) 

4.014 
(1.592) 

-11.99 
(2.471) 

-0.091 
(0.024) 

-0.087 
(0.021) 

σ3
2 35.748 

(7.391) 
3.531 

(1.295) 
0.631 

(0.736) 
10.30 

(2.633) 
0.365 

(0.053) 
0.593 

(0.152) 
Likelihood -302.23 -293.44 -249.61 -347.49 -308.51 -340.12 
 Standard errors in parentheses.



94 J. BIALKOWSKI, South-Eastern Europe Journal of Economics 2 (2004) 81-100

Table 6. Transition Matrix for MSMIXN(3) Model Estimated for Indices

In turn the examination of LR constancy does not give an outcome which is easy
to interpret. Test of LR constancy statistics did not support the hypothesis that the
descriptive validity of the MSMIXN(3) is always better than MSMIXN(2). Because,
the LR23(n) is far from being a constant function. Also, there are no strong similar-
ities between lower graphs in Figure 2, as in the case of MSMIXN(2) model.

A comparison of the moments calculated for MSMIXN(3) model with the mo-
ments estimated for the given data supports the hypothesis that for any single index,
one can not claim a priori that the MSMIXN(3) model fits the data better than the
MSMIXN(2). In Table 7 moments of the MSMIXN(3) model estimated for each
European index are reported. There is a significant improvement in fitting of mo-
ments in case of the DAX and PX50. The third and fourth moment is closer to the
corresponding one estimated directly from data. Therefore, for these indices the
Markov switching mixture of two normal distributions is rejected in favor of the
MSMIXN(3) model. In turn, in the case of the main Hungarian index the comparison
leads to a selection MSMIXN(2). It should be noted that comparison of moments in
the case of MSMIXN(3) also can lead to the situation in which it is difficult to say if
considering this particular model results in substantial improvement in data fitting.

Index Transition matrix Standard errors for main diagonal 
of transition matrix 

DAX 0.885 0.000 0.708 
0.039 0.938 0.291 
0.076 0.062 0.001 

0.0193 
0.0146 
0.1194 

CAC40 0.948 0.000 0.955 
0.000 0.634 0.025 
0.052 0.366 0.020 

0.0089 
0.0117 
0.0574 

FTSE100 0.882 0.007 0.488 
0.000 0.987 0.261 
0.118 0.006 0.251 

0.0154 
0.0037 
0.0834 

BUX 0.727 0.760 0.360 
0.195 0.000 0.445 
0.078 0.240 0.195 

0.0375 
0.0283 
0.0719 

PX50 0.814 0.439 0.967 
0.156 0.368 0.016 
0.030 0.193 0.017 

0.0137 
0.0353 
0.0719 

WIG 0.000 0.112 0.251 
1.000 0.781 0.748 
0.000 0.107 0.001 

0.0026 
0.0503 
0.3019 
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For example, there is an improvement in fitting the excess kurtosis and worsening in
case of the skewness for FTSE100, and vice versa for WIG.

Table 7. Moments for MSMIXN(3)

Finally, it is worthwhile to summarize the results. A single normal distribution has
the best descriptive validity for the CAC40. The MSMIXN(2) model fits well for the
BUX and WIG, and the MSMIXN(3) exhibits superiority in describing returns of the
DAX, FTSE100, and PX50.

In order to measure the leverage effect on the mature and emerging markets in
Europe, the parameters of the returns distribution during the crisis with parameters
of distribution during the calm period are compared. The results indicate that in the
case of MSMIXN(2), the average difference between the standard deviation de-
scribing the market in crisis periods and the standard deviation describing the market
in calm periods for western European markets is equal to 3.84. However, for central
Europe this magnitude amounts to 10.4. A similar result is obtained in the case of
MSMIXN(3), namely the average difference is equal to 3.51 for the mature and 9.61
for the emerging markets. Consequently, one observes that when the European mar-
kets being examined exercise a downturn, the returns on them are drawn from a
normal distribution characterized by higher variance. It confirms the presence of the
leverage effect on the examined markets. In order to examine the importance of the
leverage effect for emerging and mature markets, the above values are divided by
corresponding average standard deviation of returns observed for each group of the
markets. In case of both models MSMIXN(2) and MSMIXN(3) the results indicate
that during the crisis the leverage effect is more visible on the emerging than on the
mature markets.

For evaluating the vulnerability of markets to international crises, once more
Figures 1 and 3 are examined. The CAC40 is excluded from the analysis, because its
returns are drawn from a single normal distribution. It should also be stressed that
by considering monthly returns the analysis concentrates on crises, which have a
substantial impact on the economy of the examined country. According to graphs b)
and c) in those Figures the Russia crisis had the most important influence on all
European markets, especially on markets in central Europe. In the first phase of this

Moments DAX CAC40 FTSE100 BUX PX50 WIG 
Variance  49.27 33.28 18.02 108.4 53.87 90.44 
Skewness -0.926 -0.562 -0.244 0.109 -0.359 0.450 
Excess kurtosis  1.682 0.582 0.394 2.487 0.434 5.051 
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crisis the returns drop to -17.5%, -11.5%, -10%, -43%, -24%, and -31% for the
DAX, CAC40, FTSE100, BUX, PX50, and WIG, respectively. In case of Asian
crises, the most significant decrease in returns took place on the Frankfurt and
London stock exchanges. However, the influence of this crisis on emerging Europe-
an markets was relatively limited. In contrast to western European markets, the
September 11th terrorist attack did not have significant influence on monthly returns
on indices from central Europe. The accounting scandal had impact on the DAX,
FTSE100, and PX50 but its influence on monthly returns of the BUX and WIG was
negligible. The Markov mixture of normal distributions did not detect any significant
impact of the other international crises considered on monthly returns from emerging
markets.

5. Conclusions

This paper demonstrates that Markov switching mixture of two or three normal
distributions, namely MSMIXN(2) and MSMIXN(3) can successfully describe
monthly returns on indices from western and central Europe. Both of these models
are able to capture important events of international financial crises in the period
from January 1995 to November 2002. The results also indicate that these models
are able to reproduce the properties of monthly returns, namely the values of the
excess kurtosis and skewness.

Additionally the test of likelihood ratio statistic constancy, as well as customary
version of likelihood ratio test reveals the superiority of the MSMIXN(2) to a single
normal distribution in modelling returns. However in the case of choice between
MSMIXN(2) and MSMIXN(3) the results indicate that one cannot a priori decide if
the MSMIXN(3) model fits better to a given sample than the MSMIXN(2).

The investigation shows that the leverage effect is observed on both mature and
emerging markets in Europe. Nonetheless, the change from the calm to the crisis
regime leads to the larger increase in volatility on the emerging markets. The further
finding is that the market trends on stock exchanges in central Europe are less stable
than in western Europe. Finally, evaluating the vulnerability of emerging markets
from this region to international crises shows that the Russian crisis had a substan-
tial impact on them.
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Figure 1. The graphs a) present monthly return on BUX and WIG index; the graphs
b) contain the filtered (dashed line) and smoothed (solid line) probability.

Figure 2. The upper graphs present statistic LR12(n) and the lower graphs present
statistic LR23(n) for DAX, FTSE100, CAC40 and BUX, PX50, WIG respectively.
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